User:

Documento sin título
 Pre-algebra Arithmetics Integers Divisibility Decimals Fractions Exponents Percentages Proportional reasoning Radical expressions Graphs Algebra Monomials Polynomials Factoring Linear Equations Graphs of linear equations Rectangular Coordinate System Midpoint Formula Definition of Slope Positive and negative slope Determine the slope of a line Equations of lines Equation of lines (from graph) Applications of linear equations Inequalities Quadratic equations Graphs of quadratic equations Absolute Value Radical expressions Exponential equations Logarithmic equations System of equations Graphs and functions Plotting points and naming quadrants Interpreting Graphs Relations and Functions Function Notation Writing a Linear Equation from a Table Writing a Linear Equation to describe a Graph Direct Variation Indirect Variation Domain and range Sequences and series Matrices Inverse of a matrix Determinants Inner product Geometry Triangles Polygons 2-D Shapes 3-D Shapes Areas Volume Pythagorean Theorem Angles Building Blocks Geometry Transformations Parallel, coincident and intersepting lines Distances in the plane Lines in space Plane in space Angles in the space Distances in the space Similarity Precalculus Sequences and series Graphs Graphs Definition of slope Positive or negative slope Determine the slope of a line Equation of a line (slope-intercept form) Equation of a line (point slope form) Equation of a line from graph Domain and range Quadratic function Limits (approaches a constant) Limits (approaches infinity) Asymptotes Continuity and discontinuities Parallel, coincident and intersepting lines Introduction to Functions Limits Continuity Asymptotes Trigonometry Trigonometric ratios The reciprocal trigonometric ratios Trigonometric ratios of related angles Trigonometric identities Solving right angles Law of sines Law of cosines Domain of trigonometric functions Statistics Mean Median Mode Quartiles Deciles Percentiles Mean deviation Variance Standard Deviation Coefficient of variation Skewness kurtosis Frequency distribution Graphing statistics & Data Factorial Variations without repetition Variations with repetition Permutations without repetition Permutation with repetition Circular permutation Binomial coefficient Combinations without repetition Combinations with repetition

Areas
Kite and Rhombus
 A kite, or deltoid, is a quadrilateral with two disjoint pairs of congruent adjacent sides, in contrast to a parallelogram, where the sides of equal length are opposite.

A Rhombus is a four-sided polygon having all four sides of equal length and whose opposite sides are parallel (every rhombus is a kite).

Each rhombus has two diagonals. The biggest one is called long diagonal and the smaller one is called short diagonal. (Note that the diagonals of a rhombus are perpendicular).

Area of kites and rhombuses

 The area of any kite or rhombus is equal to one-half the product of the lengths D and d of its diagonals. $Area=\frac{D\;\cdot\;d}{2}\;$

Find the area in cm2

 $Area=\frac{D\;\cdot\;d}{2}\;$ $Area=\frac{12\;\cdot\;10}{2}\;$ A=60 cm2

Find the area of the rhombus where:

The addition of the two diagonals is 17and the short diagonal is 9units long. units long.

Area=