  • Matrices
• Algebra
• Geometry
• Funciones
• Trigonometry
• Coordinate geometry
• Combinatorics
 Suma y resta Producto por escalar Producto Inversa
 Monomials Polynomials Special products Equations Quadratic equations Radical expressions Systems of equations Sequences and series Inner product Exponential equations Matrices Determinants Inverse of a matrix Logarithmic equations Systems of 3 variables equations
 2-D Shapes Areas Pythagorean Theorem Distances
 Graphs Definition of slope Positive or negative slope Determine slope of a line Ecuación de una recta Equation of a line (from graph) Quadratic function Posición relativa de dos rectas Asymptotes Limits Distancias Continuity and discontinuities
 Sine Cosine Tangent Cosecant Secant Cotangent Trigonometric identities Law of cosines Law of sines
 Ecuación de una recta Posición relativa de dos rectas Distancias Angles in space Inner product

Graphs and Functions
Writing a Linear Equation to Describe a Table

You can use the data in a table to create a linear equation. You can use the data to find the slope. Once you know the slope, you can use one ordered pair and the point-slope form to create your equation.

 Rules for Writing a Linear Equation from a Table 1. Choose two sets of ordered pairs. Find the slope. 2. Use one of the ordered pairs as the x and y coordinates in the point-slope form of an equation. 3. Place the values into the point-slope form.

Write a function to describe:

 x 0 1 2 3 f(x) 0 2 4 6

1. Choose two sets of ordered pairs. Find the slope:

2. Use one of the ordered pairs as the x and y coordinates in the point-slope form of an equation.
3. Place the values into the point-slope form.

y-y1=m(x-x1)

y-0=2(x-0)

y=2x