User:

Documento sin título
 Pre-algebra Arithmetics Integers Divisibility Decimals Fractions Exponents Percentages Proportional reasoning Radical expressions Graphs Algebra Monomials Polynomials Factoring Linear Equations Graphs of linear equations Rectangular Coordinate System Midpoint Formula Definition of Slope Positive and negative slope Determine the slope of a line Equations of lines Equation of lines (from graph) Applications of linear equations Inequalities Quadratic equations Graphs of quadratic equations Absolute Value Radical expressions Exponential equations Logarithmic equations System of equations Graphs and functions Plotting points and naming quadrants Interpreting Graphs Relations and Functions Function Notation Writing a Linear Equation from a Table Writing a Linear Equation to describe a Graph Direct Variation Indirect Variation Domain and range Sequences and series Matrices Inverse of a matrix Determinants Inner product Geometry Triangles Polygons 2-D Shapes 3-D Shapes Areas Volume Pythagorean Theorem Angles Building Blocks Geometry Transformations Parallel, coincident and intersepting lines Distances in the plane Lines in space Plane in space Angles in the space Distances in the space Similarity Precalculus Sequences and series Graphs Graphs Definition of slope Positive or negative slope Determine the slope of a line Equation of a line (slope-intercept form) Equation of a line (point slope form) Equation of a line from graph Domain and range Quadratic function Limits (approaches a constant) Limits (approaches infinity) Asymptotes Continuity and discontinuities Parallel, coincident and intersepting lines Introduction to Functions Limits Continuity Asymptotes Trigonometry Trigonometric ratios The reciprocal trigonometric ratios Trigonometric ratios of related angles Trigonometric identities Solving right angles Law of sines Law of cosines Domain of trigonometric functions Statistics Mean Median Mode Quartiles Deciles Percentiles Mean deviation Variance Standard Deviation Coefficient of variation Skewness kurtosis Frequency distribution Graphing statistics & Data Factorial Variations without repetition Variations with repetition Permutations without repetition Permutation with repetition Circular permutation Binomial coefficient Combinations without repetition Combinations with repetition

Graphs and Functions
Relations and Determinig Whether a relation is a Function

A relation is a set of ordered pairs.

There are several ways to write a relation:

You can list a set of ordered pairs:

{(8,-1), (9,-3), (10,-1), (13,5)}

You can draw a mapping diagram as shown below:

 The points in the mapping diagram are the same points that were listed in the set of ordered pairs. The first oval contains the x-values and the arrow points to the appropiate y-value.

You can also write a relation in a table:

 x y 8 -1 9 -3 10 -1 13 5

You can display a relation on a graph:

or finally you can write a relation as an equation: y = x2

A function is a relation where for every x there is exactly one value for y.

To classify relations as functions when you are given a list, a mapping diagram, or a table, check the x-values. If there are two x-values that are the same but have different y-values, then the relation is not a function. If all the x-values are different and have different y-values, then the relation is a fuction.

 This is a function! This is NOT a function!

To classify relations as functions when you are given a graph, you can use the Horizontal Line Test: If a vertical line intersects more than one point on the graph, then the relation is not a function. If a vertical line intersects the graph in only one point, then the relation is a function.

This is NOT a function!

To classify a relation as a function when you are given an equation, then graph the equation and look at the graph.