User:

Documento sin título
 Pre-algebra Arithmetics Integers Divisibility Decimals Fractions Exponents Percentages Proportional reasoning Radical expressions Graphs Algebra Monomials Polynomials Factoring Linear Equations Graphs of linear equations Rectangular Coordinate System Midpoint Formula Definition of Slope Positive and negative slope Determine the slope of a line Equations of lines Equation of lines (from graph) Applications of linear equations Inequalities Quadratic equations Graphs of quadratic equations Absolute Value Radical expressions Exponential equations Logarithmic equations System of equations Graphs and functions Plotting points and naming quadrants Interpreting Graphs Relations and Functions Function Notation Writing a Linear Equation from a Table Writing a Linear Equation to describe a Graph Direct Variation Indirect Variation Domain and range Sequences and series Matrices Inverse of a matrix Determinants Inner product Geometry Triangles Polygons 2-D Shapes 3-D Shapes Areas Volume Pythagorean Theorem Angles Building Blocks Geometry Transformations Parallel, coincident and intersepting lines Distances in the plane Lines in space Plane in space Angles in the space Distances in the space Similarity Precalculus Sequences and series Graphs Graphs Definition of slope Positive or negative slope Determine the slope of a line Equation of a line (slope-intercept form) Equation of a line (point slope form) Equation of a line from graph Domain and range Quadratic function Limits (approaches a constant) Limits (approaches infinity) Asymptotes Continuity and discontinuities Parallel, coincident and intersepting lines Introduction to Functions Limits Continuity Asymptotes Trigonometry Trigonometric ratios The reciprocal trigonometric ratios Trigonometric ratios of related angles Trigonometric identities Solving right angles Law of sines Law of cosines Domain of trigonometric functions Statistics Mean Median Mode Quartiles Deciles Percentiles Mean deviation Variance Standard Deviation Coefficient of variation Skewness kurtosis Frequency distribution Graphing statistics & Data Factorial Variations without repetition Variations with repetition Permutations without repetition Permutation with repetition Circular permutation Binomial coefficient Combinations without repetition Combinations with repetition

System of equations
Solving system of equations using matrices

Solving system of equations using the augmented matrix
Systems with two equations and two avariables can also be solved using matrices and the augmented matrix.

Steps to solve systems of equations using the augmented matrix
1. Form the augmented matrix of the system.
2. Use elementary row operations to transform the augmented matrix to row echelon form.
3. Write the system of equations that correspond to the echelon form matrix.
4. Use back substitution to solve the system.
5. Check the solution in the original equations.

That is, first, arrange the system in the following form:
$\left{ax+by=c\\a'x+b'y=c$

Next create a 2x3 matrix, placing the x coefficients in the 1st column, the y coefficients in the 2nd column and the constants in the 3rd column, with a line separating the 2nd and the 3rd column:

(This is the augmented matrix)

Finally, row reduce the 2×3 matrix using the elementary row operations. The result should be the identity matrix on the left side of the line and a column of constants on the right side of the line.
These constants are the solution to the system of equations.

Solve: $\left{x+y=1\\2x-3y=-1$
1. The augmented matrix is:
2. Transform the augmented matrix to row eachelon form:

3. The corresponding system is: $\left{x+y=2\\y=1$
4. Use back substitution to find x: x+1=2, then x=1. The solution set is (1,1)

Solve using the augmented matrix:

 $\left{7x-2y=7\\3x-y=3$ x= y=