User:
• Matrices
• Algebra
• Geometry
• Funciones
• Trigonometry
• Coordinate geometry
• Combinatorics
 Suma y resta Producto por escalar Producto Inversa
 Monomials Polynomials Special products Equations Quadratic equations Radical expressions Systems of equations Sequences and series Inner product Exponential equations Matrices Determinants Inverse of a matrix Logarithmic equations Systems of 3 variables equations
 2-D Shapes Areas Pythagorean Theorem Distances
 Graphs Definition of slope Positive or negative slope Determine slope of a line Ecuación de una recta Equation of a line (from graph) Quadratic function Posición relativa de dos rectas Asymptotes Limits Distancias Continuity and discontinuities
 Sine Cosine Tangent Cosecant Secant Cotangent Trigonometric identities Law of cosines Law of sines
 Ecuación de una recta Posición relativa de dos rectas Distancias Angles in space Inner product

Trigonometry
Trigonometric identities

The following equations are the most basic and important trigonometric identities. These equations are true for any angle. From them, countless additional identities can be formed.

Basic trigonometric identities:

 tanθ = sinθ cosθ cotθ = _1_ tanθ secθ = _1_ cosθ cscθ = _1_ sinθ

Pythagorean Identities:
a) sin2A + cos2 A = 1

b) 1 + tg2 A = sec2A
c) 1 + cot2 A = csc2A

You can use the trigonometric identities given above to find trigonometric ratios if you are given the quadrant an angle lies in and the value of one trigonometric ratio.

It will be useful to remember the sign of the trigonometric ratios in each quadrant:

If sinθ=$\frac{3}{5}$ and , find cosθ and tanθ.

cos2θ=1-sin2θ=1-($\frac{3}{5}$)2=$\frac{16}{25}$, then cosθ=-$\frac{4}{5}$ because

If the cosecant of an angle is -2 and the angle is in the fourth quadrant