  • Matrices
• Algebra
• Geometry
• Funciones
• Trigonometry
• Coordinate geometry
• Combinatorics
 Suma y resta Producto por escalar Producto Inversa
 Monomials Polynomials Special products Equations Quadratic equations Radical expressions Systems of equations Sequences and series Inner product Exponential equations Matrices Determinants Inverse of a matrix Logarithmic equations Systems of 3 variables equations
 2-D Shapes Areas Pythagorean Theorem Distances
 Graphs Definition of slope Positive or negative slope Determine slope of a line Ecuación de una recta Equation of a line (from graph) Quadratic function Posición relativa de dos rectas Asymptotes Limits Distancias Continuity and discontinuities
 Sine Cosine Tangent Cosecant Secant Cotangent Trigonometric identities Law of cosines Law of sines
 Ecuación de una recta Posición relativa de dos rectas Distancias Angles in space Inner product

Trigonometry
Solving right triangles

To solve a triangle is equivalent to find unknown parts in terms of known parts.

We can use the Pythagorean theorem and properties of sines, cosines, and tangents to solve the triangle.

Solving right triangles when we know two sides.
1. The Pythagorean theorem will give us the unknown side.
2. Use a sine, cosine, or tangent to determine an unknown angle.
3. Remember that the sum of the three angles equals 180º to find the third missing angle. Solve the triangle showed:

1. Using the Pythagorean theorem:
c2 = a2 + b2, por tanto b 2 = c 2 - a 2 ;
b 2 = 5 2 - 3 2 ; b 2 = 25 - 9 ; b 2 = 16 ; b = 4.

2. Using the sine:
senA=3/5, then A=arcsen(3/5) ; A= 36'87º.

3. A+B+C=180º and C=90º, then B=180º -90º-36'87º ; B= 53'13º

So that: The sides are 3, 4 and 5, and the angles are 90º, 36'87º y 53'13º.

Solve the triangle         =    =   =7    = =6 = Note: Express the angles using only degrees (25º30' = 25.5º). Round off using only two figures.