User:
• Matrices
• Algebra
• Geometry
• Funciones
• Trigonometry
• Coordinate geometry
• Combinatorics
 Suma y resta Producto por escalar Producto Inversa
 Monomials Polynomials Special products Equations Quadratic equations Radical expressions Systems of equations Sequences and series Inner product Exponential equations Matrices Determinants Inverse of a matrix Logarithmic equations Systems of 3 variables equations
 2-D Shapes Areas Pythagorean Theorem Distances
 Graphs Definition of slope Positive or negative slope Determine slope of a line Ecuación de una recta Equation of a line (from graph) Quadratic function Posición relativa de dos rectas Asymptotes Limits Distancias Continuity and discontinuities
 Sine Cosine Tangent Cosecant Secant Cotangent Trigonometric identities Law of cosines Law of sines
 Ecuación de una recta Posición relativa de dos rectas Distancias Angles in space Inner product

Fractions and mixed numbers

Arithmetic sequences with fractions

An arithmetic sequence is a list of numbers with a definite pattern. Sometimes you may encounter a problem in arithmetic sequence that involves fractions.

What is the next fraction in this sequence?

$\frac{6}{7},\;\frac{5}{7},\;\frac{4}{7},\;\frac{3}{7}$

Look at the numerators of the fractions. The numerator decreases by 1 each time.

The rule for the pattern is: subtract $\frac{1}{7}$.

Subtract $\frac{1}{7}$ from the last fraction

$\frac{3}{7}\;-\;\frac{1}{7}\;=\;\frac{2}{7}$

The next fraction in the pattern is $\frac{2}{7}$. The pattern is:

$\frac{6}{7},\;\frac{5}{7},\;\frac{4}{7},\;\frac{3}{7},\;\frac{2}{7}$

What is the next fraction in this sequence? $\frac{7}{9},\;\frac{6}{9},\;\frac{5}{9},\;\frac{4}{9}$
 Solution: